MATLAB Function Reference |
Floating-point relative accuracy
Syntax
Description
eps
returns the distance from 1.0 to the next largest double-precision number, that is eps = 2^(-52)
.
d = eps(X)
is the positive distance from abs(X)
to the next larger in magnitude floating point number of the same precision as X
. X
may be either double precision or single precision. For all X
,
eps('double')
is the same as eps
or eps(1.0)
.
eps('single')
is the same as eps(single(1.0))
or single(2^-23)
.
Except for denormals, if 2^E <= abs(X) < 2^(E+1),
then
Replace expressions of the form
Examples
double precision eps(1/2) = 2^(-53) eps(1) = 2^(-52) eps(2) = 2^(-51) eps(realmax) = 2^971 eps(0) = 2^(-1074) if(abs(x)) <= realmin, eps(x) = 2^(-1074) eps(Inf) = NaN eps(NaN) = NaN single precision eps(single(1/2)) = 2^(-24) eps(single(1)) = 2^(-23) eps(single(2)) = 2^(-22) eps(realmax('single')) = 2^104 eps(single(0)) = 2^(-149) if(abs(x)) <= realmin('single'), eps(x) = 2^(-149) eps(single(Inf)) = single(NaN) eps(single(NaN)) = single(NaN)
See Also
eomday | eq |
© 1994-2005 The MathWorks, Inc.