Image Processing Toolbox User's Guide |
Syntax
Description
I2 = imhmin(I,h)
suppresses all minima in the intensity image I
whose depth is less than h
, where h
is a scalar.
Regional minima are connected components of pixels with a constant intensity value, and whose external boundary pixels all have a higher value.
By default, imhmin
uses 8-connected neighborhoods for 2-D images, and 26-connected neighborhoods for 3-D images. For higher dimensions, imhmin
uses conndef(ndims(I),'maximal')
.
I2 = imhmin(I,h,CONN)
computes the H-minima transform, where CONN
specifies the connectivity. CONN
can have any of the following scalar values.
Connectivity can be defined in a more general way for any dimension by using for CONN
a 3-by-3-by- ...-by-3 matrix of 0
's and 1
's. The 1
-valued elements define neighborhood locations relative to the center element of CONN
. Note that CONN
must be symmetric about its center element.
Class Support
I
can be of any nonsparse numeric class and any dimension. I2
has the same size and class as I
.
Example
Create a sample image with two regional minima.
a = 10*ones(10,10); a(2:4,2:4) = 7; a(6:8,6:8) = 2 a = 10 10 10 10 10 10 10 10 10 10 10 7 7 7 10 10 10 10 10 10 10 7 7 7 10 10 10 10 10 10 10 7 7 7 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 2 2 2 10 10 10 10 10 10 10 2 2 2 10 10 10 10 10 10 10 2 2 2 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10
Suppress all minima below a specified value. Note how the region with pixel valued 7 disappears in the transformed image.
b = imhmin(a,4) b = 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 6 6 6 10 10 10 10 10 10 10 6 6 6 10 10 10 10 10 10 10 6 6 6 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10
See Also
conndef
, imhmax
, imreconstruct
Reference
[1] Soille, P., Morphological Image Analysis: Principles and Applications, Springer-Verlag, 1999, pp. 170-171.
imhmax | imimposemin |
© 1994-2005 The MathWorks, Inc.