Neural Network Toolbox |
Graph and Symbol
Syntax
Description
The hard limit transfer function forces a neuron to output a 1 if its net input reaches a threshold, otherwise it outputs 0. This allows a neuron to make a decision or classification. It can say yes or no. This kind of neuron is often trained with the perceptron learning rule.
hardlim
is a transfer function. Transfer functions calculate a layer's output from its net input.
and returns 1 where N
is positive, 0 elsewhere
hardlim(code)
returns useful information for each code
string,
Examples
Here is the code to create a plot of the hardlim
transfer function.
Network Use
You can create a standard network that uses hardlim by calling newp
.
To change a network so that a layer uses hardlim, set net.layers{i}.transferFcn
to 'hardlim
'.
In either case call sim
to simulate the network with hardlim.
See newp
for simulation examples.
Algorithm
The transfer function output is one is n is less than or equal to 0 and zero if n is less than 0.
hardlim(n)
= 1, if n
>= 0; 0 otherwise.
See Also
gridtop | hardlims |
© 1994-2005 The MathWorks, Inc.