Wavelet Toolbox |
Syntax
Description
dyadup
implements a simple zero-padding scheme very useful in the wavelet reconstruction algorithm.
Y = dyadup(X,EVENODD)
where X
is a vector, returns an extended copy of vector X
obtained by inserting zeros. Whether the zeros are inserted as even- or odd-indexed elements of Y
depends on the value of positive integer EVENODD
:
EVENODD
is even, then Y(2k-1) = X(k)
, Y(2k) = 0
.
EVENODD
is odd, then Y(2k-1) = 0
, Y(2k) = X(k)
.
Y = dyadup(X)
is equivalent to Y = dyadup(X,
1)
(odd-indexed samples).
Y = dyadup(X,
EVENODD,'type
')
or Y = dyadup(X,
'type
',EVENODD)
, where X
is a matrix, returns extended copies of X
obtained by inserting
Columns in X |
If ' type ' = 'c' |
Rows in X |
If ' type ' = 'r' |
Rows and columns in X |
If ' type ' = 'm' |
according to the parameter EVENODD, which is as above.
If you omit the EVENODD
or 'type
' arguments, dyadup
defaults to EVENODD
= 1 (zeros in odd-indexed positions) and 'type
' = 'c'
(insert columns).
Y = dyadup(X)
is equivalent to Y = dyaddown(X,
1,'c
')
.
Y = dyadup(X,
'type
')
is equivalent to Y = dyadup(X,
1,
'type
')
. Y = dyadup(X,
EVENODD)
is equivalent to Y = dyadup(X,
EVENODD,
'c
')
.
Examples
% For a vector. s = 1:5 s = 1 2 3 4 5 dse = dyadup(s) % Upsample elements at odd indices. dse = 0 1 0 2 0 3 0 4 0 5 0 % or equivalently dse = dyadup(s,1) dse = 0 1 0 2 0 3 0 4 0 5 0 dso = dyadup(s,0) % Upsample elements at even indices. dso = 1 0 2 0 3 0 4 0 5 % For a matrix. s = (1:2)'*(1:3) s = 1 2 3 2 4 6 der = dyadup(s,1,'r') % Upsample rows at even indices. der = 0 0 0 1 2 3 0 0 0 2 4 6 0 0 0 doc = dyadup(s,0,'c') % Upsample columns at odd indices. doc = 1 0 2 0 3 2 0 4 0 6 dem = dyadup(s,1,'m') % Upsample rows and columns % at even indices. dem = 0 0 0 0 0 0 0 0 1 0 2 0 3 0 0 0 0 0 0 0 0 0 2 0 4 0 6 0 0 0 0 0 0 0 0 % Using default values for dyadup and dyaddown, we have: % dyaddown(dyadup(s)) = s. s = 1:5 s = 1 2 3 4 5 uds = dyaddown(dyadup(s)) uds = 1 2 3 4 5 % In general reversed identity is false.
See Also
dyaddown
References
Strang, G.; T. Nguyen (1996), Wavelets and Filter Banks, Wellesley-Cambridge Press.
dyaddown | entrupd |
© 1994-2005 The MathWorks, Inc.