ПРИМЕНЕНИЕ MATLAB WEB SERVER В ГЕОФИЗИКЕ ДЛЯ ИНТЕРАКТИВНОЙ АДАПТИВНОЙ ОБРАБОТКИ ДАННЫХ, РАСПРЕДЕЛЕННЫХ В СЕТИ ИНТЕРНЕТ

Одинцов В. И.,

Институт Земного магнетизма, ионосферы и распространения радиоволн РАН, Троицк, Московская обл., e-mail: vodin@izmiran.ru Конрадов А. А., Институт биохимической физики им. Н. М. Эммануэля РАН, Москва, e-mail: ak@sky.chph.ras.ru Кукса Ю. И. Институт геоэлектромагнитных исследований РАН, Троицк, Московская обл., e-mail: Kuksa@geo.igemi.troitsk.ru

Абстракт

Рассмотрены вопросы внедрения методов адаптивной фильтрации на основе технологии MATLAB Web Server в области геофизики, Солнечно-Земной физики и смежных областях знаний для решения широкого круга задач, в том числе прикладных, возникающих при мониторинге состояния околоземного космического пространства, оценке его влияния на технологические системы, биологические объекты и здоровье людей, анализе процессов в земной коре и верхней мантии. Предложена схема организации вычислительного ресурса для специалистов, направленного на обработку больших объемов экспериментальных данных. В его основу положены функционирующие в системе MATLAB прикладные программы адаптивной обработки данных, связь с которыми обеспечивается через Интернет посредством MATLAB Web Server. Для доступа пользователей к вычислительным ресурсам и распределенным в сети Интернет базам данных используются Web-технологии на основе стандартных HTML-форм и документов. Приводятся примеры использования Web-сервиса для исследования геодинамических процессов в Земной коре и верхней мантии на основе вычисления передаточных функций между компонентами магнитотеллурического поля с высоким временным разрешением с целью изучения их временной динамики. Разработаны программы для изучения спектральновременных и спектрально-пространственных характеристик крупных региональных магнитных аномалий по большому объему данных приземных съемок и спутниковых измерений магнитного поля Земли [1]. Имеются пакеты программ для анализа взаимосвязи между динамикой секторной структуры межпланетного магнитного поля и вариациями магнитного поля Земли, как в высоких, так и в низких широтах [2]. Общедоступность средства интерактивного анализа данных, организация свободного доступа к ресурсам, исполнение запросов в автоматическом режиме, постоянное пополнение информационной и вычислительной баз гарантируют его развитие и профессиональную востребованность.

Работа выполнена при поддержке РФФИ, грант 03-07-90066.

Введение

Развитие исследований по солнечно-земной физике в значительной степени базируется на знаниях о магнитосфере Земли и ее поведении в периоды магнитных бурь. При этом весь земной шар рассматривается как единая лабораторная установка с системой датчиков в виде отдельных обсерваторий, на основании наблюдений которых мы судим о процессах в околоземном космическом пространстве. В наше время осуществляется широкая международная программа CAWSES «Climate and Weather of the Sun-Earth System» (по-русски «Климат и погода в системе Солнце-Земля»), рассчитанная на 2004-2008 гг. и призванная объединить все исследования по солнечно-земной физике в единый блок на основе опыта предыдущих международных программ. С другой стороны все ведущие космические агентства приняли программу ILWS «International Liwing With a Star», направленную на координацию спутниковых научных проектов. Целиком программа будет развернута ко времени развития следующего максимума солнечной активности в 2010-2013 гг. В свете подготовки к празднованию 50-летия Международного геофизического года (1957-1958), который фактически положил начало космической эре, учеными разных стран предложено несколько инициативных научных проектов, в том числе «Международный гелиофизический год», см. www.ihy.gsfc.nasa.gov и «Международный полярный год», см. www.ipy.gsfc.nasa.gov. К этому же времени ожидается запуск сразу 5 микроспутников по проекту THEMIS (Time History of Events and Macroscale Interactions during Substorms, сайт http://sprg.ssl.berkeley.edu/themis/), целью которого является исследование суббуревых нестабильностей, формирующихся при прохождении частиц солнечного ветра через магнитопаузу и приводящих к возникновению суббурь. Во всех этих проектах учтены требования наземной поддержки исследований, в первую очередь в виде мониторинга состояния магнитного поля Земли и ионосферы. В международном масштабе основой системы мониторинга состояния магнитного поля Земли служит система «Интермагнит» <u>www.intermagnet.ru</u> объединяющая данные более 90 магнитных обсерваторий со всего мира. В недавнем прошлом собрана база данных геомагнитных обсерваторий РОССИИ за 1984-2000 гг. на CD-ROM и издана с пояснительной брошюрой [3]. CD-ROM размещен на сайте http://magbase.rssi.ru/index.htm. Пополнение базы данных основано на

взаимодействии всех институтов, ведущих наблюдения на геомагнитных обсерваториях России. Создается программное обеспечение для работы с базами данных. В рамках гранта РФФИ № 03-07-90066 в ИЗМИРАН ведется отработка технологии интерактивного доступа пользователей к вычислительным ресурсам и распределенным в сети Интернет базам экспериментальных данных на основе средства МАТLAB Web Server, использующего возможности Интернет для передачи данных в систему МАTLAB для вычислений и отображения результатов в Web-браузерах пользователей с использованием стандартных НТМL-форм.

Некоторые аспекты анализа данных в геофизике

Нередко изучаемые в геофизике процессы, происходящие в природных или природно-технических системах, недоступны для непосредственного наблюдения. В таких ситуациях исследователи вынуждены прибегать к наблюдению других, доступных процессов, порождаемых изучаемыми. Наблюдаемые и изучаемые процессы могут быть связаны достаточно сложным образом, на них могут оказывать влияние иные процессы, происходящие в других системах, они могут быть искажены шумами и т. п. Стремление полнее понять изучаемые явления и повысить достоверность заключений об их природе ведет к расширению круга наблюдений, проведению их на распределенной в пространстве сети станций, т. е. переходу к комплексному анализу. Например, мониторинг геодинамических процессов включает сейсмологические, геодезические, геохимические, гидрогеологические, электромагнитные и т. п. наблюдения. Результатом такого мониторинга, с формальной точки зрения, является совокупность временных рядов разнообразных данных.

В практике мониторинга геодинамических процессов широко используются статистические методы анализа данных. В частности, для выяснения степени взаимосвязи наблюдаемых рядов данных используется корреляционный анализ. Однако он не позволяет установить вид этой связи. Регрессионный анализ, в лучшем случае, позволяет предсказывать значения одного из рядов по синхронно принимаемым значениям других. Между тем в природных процессах, как правило, наблюдаются более сложные формы связей, когда значение одного ряда в какой-либо момент времени t определяется совокупностью значений другого ряда на некотором отрезке времени. Например, если два ряда y(t) и x(t) связаны между собой линейной причинно-следственной связью, то эта связь выражается соотношением свертки:

$$y(t) = \int_{0}^{t} g(t) \cdot x(t-\tau) d\tau + \Delta y(t), \qquad (1)$$

где $g(\tau)$ — некоторая передаточная функция (точнее — ее импульсная пе-

реходная характеристика), а $\Delta y(t)$ — невязка, характеризующая точность выполнения сверточной связи. Такое же соотношение имеет место и в том случае, когда оба ряда порождаются (являются следствием) одного и того же основного процесса. Если же основной процесс достаточно сложен и может быть охарактеризован несколькими (N) независимо протекающими субпроцессами, то и среди наблюдаемых рядов нередко можно выделить N независимых, и любой другой ряд, порождаемый тем же основным процессом, будет описываться векторным соотношением свертки:

$$y(t) = \sum_{i=1}^{N} g_i(t) * x_i(t)$$
(2)

На практике соотношения (1) или (2) выполняются с погрешностью $\Delta y(t)$, которая включает в себя шумы измерений, неучтенные субпроцессы, а так же возможные влияния на процесс измерений других процессов, сторонних по отношению к изучаемому (например, экзогенных). Их влияние можно исключить с помощью того же аппарата передаточных функций, примененного к иной группе рядов наблюденных данных, связанных с этим сторонним процессом. Связи вида (1) и (2) не универсальны. Они имеют место, когда наблюдаемые данные линейно связаны с основным процессом и связи между их рядами стационарны (хотя сами ряды могут и не обладать свойством стационарности). Передаточные функции зависят, как правило, от физико-геологического строения среды в окрестности пункта наблюдения. Если это строение изменяется в силу протекающих в среде процессов, то изменяются и сами передаточные функции. Их изменение несет дополнительную информацию об изучаемых процессах.

Адаптивные методы решения задач геофизики

Передаточные функции $g_i(t)$ могут быть найдены путем решения интегральных уравнений свертки (1) или (2) на отрезке времени, на котором заданы значения рядов $x_i(t)$ и $y_i(t)$. После того, как эти функции определены, соотношения (1) и (2) могут использоваться для предсказания поведения ряда y(t) по известному поведению рядов $x_i(t)$ (но только, если передаточные функции неизменны во времени). Если значения остаточного ряда $\Delta y(t)$ превышают измерительные шумы и погрешности вычислений, то он может нести независимую от $x_i(t)$ информацию. Безотносительно величины $\Delta y(t)$ полезную независимую информацию могут давать также изменения во времени передаточных функций $g_i(t)$.

Решение интегральных уравнений свертки (1) или (2) может быть найдено хорошо известными методами [4], однако для целей мониторинга наиболее подходящими представляются итерационные адаптивные методы [5]. В таких методах последовательно получаемые решения уравнений достигаются при постоянно обновляющихся с течением времени значени-

ях временных рядов y(t) и $x_i(t)$. Если связи между рядами не изменяются, то передаточные функции $g_i(t)$ принимают после ряда итераций значения близкие к истинным, и в дальнейшем колеблются в их малой окрестности. Если стационарность связей между рядами нарушается, то адаптивные методы позволяют отслеживать изменения передаточных функций во времени. Это, конечно, возможно лишь при более медленных их изменениях по сравнению с вариациями самих рядов.

Наиболее простым и в то же время эффективным методом решения систем алгебраических уравнений, к которым после дискретизации сводятся уравнения свертки, зарекомендовал себя метод наименьших квадратов Уидроу-Хоффа [5]. Итерационный алгоритм этого метода чрезвычайно прост:

$$g_i(k+1,l) = g_i(k,l) + \mu \cdot \Delta y(k) \cdot x_i(k-l),$$
 (3)

где индекс k обозначает дискретизированное текущее время наблюдений, l — время задержки импульсной переходной характеристики, а μ — величину параметра сходимости. Значения $\Delta y(k)$ находятся путем вычитания из наблюденного значения y(k) его синтезированного значения $y^{S}(k)$:

$$y^{S}(k) = \sum_{i=1}^{N} \sum_{l=1}^{L} g_{i}(k,l) \cdot x_{i}(k-l) \cdot \Delta t$$
(4)

Последнее выражение представляет собой дискретизированную форму соотношения свертки (2) с определенными на *k*-ом отрезке времени значениями передаточных функций, Δt — интервал дискретизации.

Характерным примером является обработка данных наблюдений естественных электромагнитных полей Земли с применением описанного выше аппарата передаточных функций. Как известно, эти вариации, в основном, порождаются вариациями токов в ионосфере Земли. В силу удаленности этих токов от точек наблюдения поля на поверхности Земли, их можно рассматривать в первом приближении как токи на плоскости, случайным образом изменяющие свою интенсивность и направление. В соответствии с выбранным представлением систему таких токов можно охарактеризовать двумя независимыми субпроцессами — изменениями составляющих этих токов по двум координатным направлениям на плоскости. Эти токи порождают электромагнитное поле в форме вертикально падающей на Землю плоской волны. Если целью мониторинга является слежение за ионосферными токами, то в наблюдаемом на поверхности Земли поле следует выбрать также две независимо изменяющиеся во времени компоненты электромагнитного поля [6]. В качестве таких компонент естественно выбрать две горизонтальные компоненты геомагнитного поля (H_x, H_y) , на которые электрическое строение Земли оказывает наименьшее воздействие — ввиду большой контрастности по сопротивлению атмосферы и литосферы эти компоненты просто удваиваются по сравнению с падающим полем. Остальные компоненты электромагнитного поля тесно связаны с геоэлектрическим разрезом (электрическое поле E_x , E_y) или появляются в силу его горизонтальной неоднородности (вертикальная компонента магнитного поля H_z). В рамках сформулированной модели вариации этих компонент в соответствии с выражением (2) могут быть описаны соотношением:

$$H_{Z}(t) = H_{X}(t) * I_{ZX}(t) + H_{Y}(t) * I_{ZY}(t) + \Delta H_{Z}(t),$$
(5)

где $I_{zx}(t)$ и $I_{zy}(t)$ — компоненты индукционного вектора или, в более общей трактовке, — импульсные переходные характеристики соответствующих передаточных функций, отражающие электрическое строение Земли в окрестности точки наблюдения. В вариациях остаточного поля (ΔH_z) в значительной степени ослаблена зависимость от ионосферных токов. Существенный вклад в них вносят поля внутреннего, геодинамического происхождения, возникающие в недрах Земли в результате разнообразных механоэлектрических преобразований. Если в результате каких-либо геодинамических процессов не только генерируются электромагнитные поля, но и изменяется геоэлектрическое строение среды, то соответственно изменяются и передаточные функции I_{ij} . Их изменения несут независимую по сравнению с остаточными полями информацию о протекающих внутри Земли процессах, которая может быть эффективно использована для целей геодинамического мониторинга.

Примеры реализации вычислительного алгоритма

Блок-схема вычислительного алгоритма метода наименьших квадратов Уидроу-Хоффа представлена на рис. 1.

Рис. 1. Блок-схема вычислительного алгоритма.

На этой схеме блоки «Адаптивный фильтр» 1 и 2 реализуют итерационный алгоритм (3). В соответствии с выражением (5) в качестве опорных сигналов на входах блоков используются две горизонтальные компоненты геомагнитного поля (H_x, H_y) , а в качестве основного — вертикальная компонента H_z . Разностный сигнал на выходе находится путем вычитания из наблюденного значения H_z его синтезированного значения в соответствии с выражением (4).

Рассмотренный алгоритм адаптивного фильтра был применен нами для анализа данных магнитотеллурического мониторинга, проводимого на Бишкекском геофизическом полигоне в начале 90-х годов [7]. С помощью пакета программ, написанных на Паскале, были обработаны ряды данных непрерывной в течение нескольких лет регистрации электромагнитного поля Земли, и графики, характеризующие динамику передаточных функций во времени, были сопоставлены с данными о сейсмической активности региона. На основании полученных результатов были отработаны методики мониторинга сейсмической активности.

В пакете расширения Filter Design, начиная с версии 2.1, входящей в поставку MATLAB 6.1, содержатся функции, реализующие алгоритмы адаптивной фильтрации [8]. Однако, по целому ряду соображений, нами были использованы функции собственной разработки. Код основной MATLAB-программы, реализующей алгоритм метода наименьших квадратов Уидроу-Хоффа, приведен ниже:

k=1:L; Ys = sum(sum(W(:,k).*X(:,i-k+1))); E(i) = S(i)-Ys; for j=1:Nref W(j,k)=W(j,k)+2*U(j)*E(i)*X(j,i-k+1); end;

Здесь: L — длина фильтра; N_{ref} — число опорных сигналов; E — разностный сигнал; Y_S — синтезированный сигнал; W — передаточные функции. Разработанная нами программа позволяет использовать любое число опорных сигналов и произвольное количество циклов адаптации.

Новые возможности, предоставляемые пакетом MATLAB, позволили провести дополнительную обработку данных. На Рис. 1. показан пример вычисления передаточных функций между компонентами магнитного поля Земли в соответствии с выражением (5) продолжительностью в 24 часа. В качестве основного сигнала принята вертикальная компонента вариаций геомагнитного поля, в качестве опорных — горизонтальные компоненты. На графиках представлены исходный основной временной ряд (Raw data), разностный временной ряд (Residuals), а также передаточные функции между вертикальной и горизонтальными компонентами.

Секция 7. MATLAB в образовании и Интернете

Рис. 1. Пример вычисления передаточных функций между компонентами электромагнитного поля Земли: 1 — основная компонента H_Z; 2 — остаточное поле; 3–4 — передаточные функции по компонентам H_X, H_Y.

Из графика видно, как в течение суток меняется характер вариаций электромагнитного поля, а также характер связи между компонентами, что отражается в изменениях передаточных функций. Детальный анализ физического смысла этих изменений выходит за рамки данной работы.

Спектрально-временной анализ узкополосным адаптивным фильтром

Определенный интерес представляет анализ изменений спектра колебаний в разностном (остаточном) поле. Учитывая специфику геофизических исследований, а именно, интерес к низкочастотной части спектра в диапазоне периодов от единиц минут до часа, пришлось отказаться от традиционных методов спектрального анализа. Для спектрально-временного анализа рядов данных нами был использован метод выделения гармонических составляющих с помощью узкополосных адаптивных режекторных фильтров [9]. Их преимущества заключаются в простоте перестройки полосы пропускания, практически неограниченном подавлении соседних гармоник и точном слежении за частотой. Принцип их действия может быть описан той же блок-схемой рис.1. Отличие заключается лишь в том, что на входы адаптивных фильтров 1 и 2 в качестве опорных сигналов подаются две квадратурные составляющие моногармонического сигнала с частотой ω_0 , равной частоте выделяемой гармоники. Анализируемый временной ряд S_i поступает на вход основного сигнала. Формируемые в процессе вычислений квадратурные составляющие x_{1i} и x_{2i} в каждой точке анализируемого временного ряда принимают значения:

$$\begin{aligned} x_{1i} &= C \cdot \cos(\omega_0 i \Delta t + \varphi) \\ x_{2i} &= C \cdot \sin(\omega_0 i \Delta t + \varphi) \end{aligned} \tag{6}$$

где C — амплитуда колебания, Δt — шаг дискретизации. Из этих значений и весовых коэффициентов адаптивного фильтра W_{1i} и W_{2i} формируется синтезированный сигнал $S_{si} = x_{1i}W_{1i} + x_{2i}W_{2i}$. Разность между исходным и синтезированным сигналами $\varepsilon_i = S_i - S_{si}$ используется в качестве параметров, управляющего обновлением весовых коэффициентов фильтра на каждом шаге вычисления в соответствии с выражениями:

$$W_{1,i+1} = W_{1,i} + 2\mu\varepsilon_{i}x_{1i}$$

$$W_{2,i+1} = W_{2,i} + 2\mu\varepsilon_{i}x_{2i}$$
(7)

где μ — параметр, характеризующий скорость сходимости алгоритма адаптации коэффициентов фильтра. Добротность такого фильтра определяется выражением $Q = \omega_0 \Delta t / (2 \mu C^2)$. Синтезированный сигнал S_{si} является выделяемой гармоникой с частотой ω_0 , огибающая которой находится по формуле:

$$A_i = C\sqrt{W_{1i}^2 + W_{2i}^2}$$
(8)

Код MATLAB-программы узкополосного адаптивного режекторного фильтра в соответствии с выражениями (6) и (7), приведен ниже:

Xs1 = Amax.*sin(pii.*step); Xs2 = Amax.*cos(pii.*step); step = step+1; Ys = Ws1.*Xs1+Ws2.*Xs2; Eps = AvErr(i)-Ys; Ws1 = Ws1 + (2*Eps).*Xs1; Ws2 = Ws2 + (2*Eps).*Xs2;

При помощи такого фильтра были обработаны данные временного ряда остаточного поля из предыдущего примера. Результат их обработки в виде динамического спектра показан на рис. 2. Динамические спектры вариаций позволяют детально исследовать наличие и амплитуды гармонических составляющих временного ряда в диапазоне периодов от 2 мин. до 1 часа с высоким разрешением. При этом не имеет значения, какой шаг будет установлен между соседними гармониками, а также характер шкалы линейный, логарифмический, либо произвольный переменный.

Рис. 2. Динамический спектр вариаций остаточного поля после вычисления передаточных функций между компонентами электромагнитного поля Земли.

Инструментальное средство MATLAB Web Server

Особый интерес в геофизике представляет сетевой доступ к данным, распределенным в Интернет, и интерактивный анализ экспериментальных данных по запросам пользователей. Процедура должна быть максимально упрощена, с тем, чтобы обеспечить эффективное обращение к данным и вычислительными ресурсам даже для той категории пользователей, которые не имеют достаточного опыта создания и эксплуатации программ обработки данных, получаемых в процессе геофизических экспериментов.

Одним из вариантов обеспечения интерактивного взаимодействия может быть применение Web Server из пакета MATLAB для передачи данных на главный компьютер с установленной системой MATLAB, проведения на нем вычислений и отображения результатов на Web-браузере пользователя путем стандартной Web-технологии в виде HTML-форм и документов. Форма дает пользователю возможность проверить наличие данных, выбрать требуемую обсерваторию, интервал времени, компоненту магнитного поля, воздействовать на параметры рисунка (цветной либо монохромный) и т. п. На Рис. 3. показана HTML-форма для отправки запроса на обработку заданного отрезка временного ряда.

Рис. 3. Пример НТМL-формы для отправки запроса на обработку данных.

В ответ на запрос пользователь получает результат обработки конкретного временного ряда в виде графического представления или сформированного нового файла, содержащего как результаты обработки, так и подготовленный новый ряд данных для последующей обработки средствами пользователя.

На этом примере показана возможность организации интерактивного доступа к базе данных геомагнитных обсерваторий РОССИИ за 1984 — 2000 гг., размещенной на сайте http://magbase.rssi.ru/index.htm, а также данным непрерывной регистрации вариаций геомагнитного поля в обсерватории Москва http://www.izmiran.rssi.ru/magnetism/mos_data.htm. На Рис. 4 приведен график вариаций одной из компонент геомагнитного поля во время большой магнитной бури 20 ноября 2003 г., сформированный по за-

просу пользователя, а также результат спектрально-временного анализа этих вариаций (динамические спектры).

Рис. 4. Пример формы, возвращаемой в ответ на запрос пользователя.

Для пересылки данных с удаленных сайтов Интернет используются либо средства МАТLAB, либо небольшие CGI-программы на языке Perl. Фрагмент кода МАТLAB-программы для запроса данных с удаленного сайта приводится ниже:

```
fn = strcat('V',YeMo,'.',Cod);
pn = strcat('D:\CDMASTER\DATABASE\',Yea,'\',YeMo,'\');
if exist([pn,fn]) ~= 0
fin = fopen([pn,fn],'r');
else
if exist(fn) == 0
pn = strcat('http://magbase.rssi.ru/database/',Yea,'/',YeMo,'/');
URLWRITE([pn,fn],fn); end
fin = fopen(fn,'r');
end;
```

В этой программе из данных формы запроса, полученной Web Server, формируется имя запрошенного файла и путь к нему (в соответствии с принятой структурой базы данных). Затем следует проверка на наличие данных непосредственно на той машине, где установлена MATLAB и исполняемые программы обработки. В случае отсутствия данных производится их поиск по всем известным адресам в Интернет.

Заключение

Само по себе представление геофизических данных хотя и является крайне важным шагом на пути их активного использования, но не может удовлетворить всем современным требованиям ученых-исследователей. Перспективным направлением в этом плане может быть создание обобщенных аналитических представлений — например, вариационных магнитных данных в виде моделей эквивалентных токовых систем и других параметров ионосферы в планетарном масштабе. В последние годы эти методы анализа и представления данных были развиты и реализованы в виде сервиса в реальном времени AMIE — «Assimilative Mapping of Ionospheric Electrodynamics», на сайте http://amie.ngdc.noaa.gov/current.html. Такое обобщенное представление большого объема данных позволяет сразу перейти от качественного описания развития возмущений магнитного поля к их количественной оценке. Применение новейших информационных технологий открывает широкому кругу специалистов доступ через Интернет к базам данных и их интерактивному анализу средствами системы MATLAB. Пример использования MATLAB Web Server для доступа к «Базе данных геомагнитных обсерваторий России» на CD-ROM и вычисления спектрально-временных характеристик геомагнитных вариаций по представлен данным этой базы В тестовой версии на сайте http://vlod.izmiran.rssi.ru.

Работа выполнена при поддержке РФФИ, грант 03-07-90066.

Литература

1. Ротанова Н. М., Цветков Ю. П., Одинцов В. И., Бурцева Э. А. Магнитное сканирование земной коры Сибирского региона с борта стратосферного аэростата // Исследование Земли из космоса.— 2001.— №4.— С.63–73.

- Зайцев А. Н., Одинцов В. И. Наблюдение эффектов секторной структуры ММП в околоземном пространстве по геомагнитным данным // Актуальные проблемы физики Солнечной и звездной активности. Конф. стран СНГ и Прибалтики (Нижний Новгород, 2–7 июня 2003): Сб.докл. в 2-х т. Т.ІІ.— Нижний Новгород: ИПФ РАН, 2003.— С.460–464.
- Амиантов А. С., Зайцев А. Н., Одинцов В. И., Петров В. Г. Вариации магнитного поля Земли: База цифровых данных магнитных обсерваторий России за период 1984–2000. (брошюра и оптический диск CD-ROM).— М.: СтройАрт, 2001.— 52 стр.
- 4. *Тихонов Н. Н., Арсенин В. Я.* Методы решения некорректных задач.— М.: Наука, 1979.— 285 с.
- 5. Уидроу Б., Стирнз С. Адаптивная обработка сигналов. М., Радио и связь, 1989. 440 с.
- 6. Светов Б. С., Шимелевич М. И. Определение линейных связей между компонентами магнитотеллурического поля основные принципы // Физика Земли.— 1982.— №5.— С.59–67.
- 7. Светов Б. С., Каринский С. Д., Кукса Ю. И., Одинцов В. И. Магнитотеллурический мониторинг геодинамических процессов // Физика Земли.— 1997.— №5.— С.36–46.
- 8. Сергиенко А. Б. Алгоритмы адаптивной фильтрации: особенности реализации в MATLAB // Exponenta Pro. Математика в приложениях.— 2003.— №1.— С.18–28.
- 9. Уидроу Б., Гловер Д. Р., Макул Д. М. и др. Адаптивные компенсаторы помех. Принципы построения и применения // ТИИЭР.— 1975.— Т.63.— №12.— С.69–98.