Wavelet Toolbox |
Fourier Analysis
Signal analysts already have at their disposal an impressive arsenal of tools. Perhaps the most well known of these is Fourier analysis, which breaks down a signal into constituent sinusoids of different frequencies. Another way to think of Fourier analysis is as a mathematical technique for transforming our view of the signal from time-based to frequency-based.
For many signals, Fourier analysis is extremely useful because the signal's frequency content is of great importance. So why do we need other techniques, like wavelet analysis?
Fourier analysis has a serious drawback. In transforming to the frequency domain, time information is lost. When looking at a Fourier transform of a signal, it is impossible to tell when a particular event took place.
If the signal properties do not change much over time -- that is, if it is what is called a stationary signal -- this drawback isn't very important. However, most interesting signals contain numerous nonstationary or transitory characteristics: drift, trends, abrupt changes, and beginnings and ends of events. These characteristics are often the most important part of the signal, and Fourier analysis is not suited to detecting them.
Wavelet Applications | Short-Time Fourier Analysis |
© 1994-2005 The MathWorks, Inc.