Wavelet Toolbox |
Wavelet Decomposition: A Hierarchical Organization
Unlike conventional techniques, wavelet decomposition produces a family of hierarchically organized decompositions. The selection of a suitable level for the hierarchy will depend on the signal and experience. Often the level is chosen based on a desired low-pass cutoff frequency.
At each level j, we build the j-level approximation Aj, or approximation at level j, and a deviation signal called the j-level detail Dj, or detail at level j. We can consider the original signal as the approximation at level 0, denoted by A0. The words approximation and detail are justified by the fact that A1 is an approximation of A0 taking into account the low frequencies of A0, whereas the detail D1 corresponds to the high frequency correction. Among the figures presented in the section Reconstructing Approximations and Details, one of them graphically represents this hierarchical decomposition.
One way of understanding this decomposition consists of using an optical comparison. Successive images A1, A2, A3 of a given object are built. We use the same type of photographic devices, but with increasingly poor resolution. The images are successive approximations; one detail is the discrepancy between two successive images. Image A2 is, therefore, the sum of image A4 and intermediate details D4, D3:
Wavelets: A New Tool for Signal Analysis | Finer and Coarser Resolutions |
© 1994-2005 The MathWorks, Inc.