Wavelet Toolbox |
Inverse 2-D lifting wavelet transform
Syntax
X = ilwt2(AD_In_Place,W) X = ilwt2(CA,CH,CV,CD,W) X = ilwt2(AD_In_Place,W,LEVEL) X = ilwt2(CA,CH,CV,CD,W,LEVEL) X = ilwt2(AD_In_Place,W,LEVEL,'typeDEC',typeDEC) X = ilwt2(CA,CH,CV,CD,W,LEVEL,'typeDEC',typeDEC)
Description
ilwt2 performs a 2-D lifting wavelet reconstruction with respect to a particular lifted wavelet that you specify.
X = ilwt2(AD_In_Place,W) computes the reconstructed matrix X using the approximation and detail coefficients matrix AD_In_Place obtained by a lifting wavelet decomposition. W is a lifted wavelet name (see liftwave
).
X = ilwt2(CA,CH,CV,CD,W) computes the reconstructed matrix X using the approximation coefficients vector CA and detail coefficients vectors CH, CV, CD obtained by a lifting wavelet decomposition.
X = ilwt2(AD_In_Place,W,LEVEL) or X = ILWT2(CA,CH,CV,CD,W,LEVEL) computes the lifting wavelet reconstruction, at level LEVEL.
X = ilwt2(AD_In_Place,W,LEVEL,'typeDEC',typeDEC) or X = ilwt2(CA,CH,CV,CD,W,LEVEL,'typeDEC',typeDEC) with typeDEC = 'w' or 'wp' computes the wavelet or the wavelet packet decomposition using lifting, at level LEVEL.
Instead of a lifted wavelet name, you may use the associated lifting scheme LS: X = ilwt2(...,LS,...) instead of X = ilwt2(...,W,...).
For more information about lifting schemes, see lsinfo
.
Examples
% Start from the Haar wavelet and get the % corresponding lifting scheme. lshaar = liftwave('haar'); % Add a primal ELS to the lifting scheme. els = {'p',[-0.125 0.125],0}; lsnew = addlift(lshaar,els); % Perform LWT at level 1 of a simple image. x = reshape(1:16,4,4); [cA,cH,cV,cD] = lwt2(x,lsnew); % Perform integer LWT of the same image. lshaarInt = liftwave('haar','int2int'); lsnewInt = addlift(lshaarInt,els); [cAint,cHint,cVint,cDint] = lwt2(x,lsnewInt); % Invert the two transforms. xRec = ilwt2(cA,cH,cV,cD,lsnew); err = max(max(abs(x-xRec))) err = 0 xRecInt = ilwt2(cAint,cHint,cVint,cDint,lsnewInt); errInt = max(max(abs(x-xRecInt))) errInt = 0
See Also
lwt2
ilwt | ind2depo |
© 1994-2005 The MathWorks, Inc.