Wavelet Toolbox |
Integrate wavelet function psi ()
Syntax
[INTEG,XVAL] = intwave('wname
',PREC) [INTEG,XVAL] = intwave('wname
',PREC,PFLAG) [INTEG,XVAL] = intwave('wname
')
Description
[INTEG,XVAL] = intwave(
'wname
',PREC)
computes the integral, INTEG
, of the wavelet function (from to XVAL
values):
for x in XVAL
.
The function is approximated on the 2PREC points grid XVAL
where PREC
is a positive integer. 'wname
' is a string containing the name of the wavelet (see wfilters
for more information).
Output argument INTEG is a real or complex vector depending on the wavelet type.
[INTDEC,XVAL,INTREC] = intwave('wname
',PREC) computes the integrals, INTDEC and INTREC, of the wavelet decomposition function dec and the wavelet reconstruction function rec.
[INTEG,XVAL] = intwave(
'wname
',PREC)
is equivalent to [INTEG,XVAL] = intwave(
'wname
',PREC,0)
.
[INTEG,XVAL] = intwave(
'wname
')
is equivalent to [INTEG,XVAL] = intwave(
'wname
',8)
.
When used with three arguments intwave('wname
',IN2,IN3), PREC = max(IN2,IN3) and plots are given.
When IN2 is equal to the special value 0, intwave(
'wname
',0)
is equivalent to intwave(
'wname
',8,IN3)
.
intwave(
'wname
')
is equivalent to intwave(
'wname
',8)
.
intwave
is used only for continuous analysis (see cwt
for more information).
Examples
% Set wavelet name. wname = 'db4'; % Plot wavelet function. [phi,psi,xval] = wavefun(wname,7); subplot(211); plot(xval,psi); title('Wavelet'); % Compute and plot wavelet integrals approximations % on a dyadic grid. [integ,xval] = intwave(wname,7); subplot(212); plot(xval,integ); title(['Wavelet integrals over [-Inf x] ' ... 'for each value of xval']);
Algorithm
First, the wavelet function is approximated on a grid of 2PREC points using wavefun
. A piecewise constant interpolation is used to compute the integrals using cumsum
.
See Also
wavefun
ind2depo | isnode |
© 1994-2005 The MathWorks, Inc.