Neural Network Toolbox |
Limitations and Cautions
Perceptron networks should be trained with adapt
, which presents the input vectors to the network one at a time and makes corrections to the network based on the results of each presentation. Use of adapt in this way guarantees that any linearly separable problem is solved in a finite number of training presentations. Perceptrons can also be trained with the function train
, which is presented in the next chapter. When train
is used for perceptrons, it presents the inputs to the network in batches, and makes corrections to the network based on the sum of all the individual corrections. Unfortunately, there is no proof that such a training algorithm converges for perceptrons. On that account the use of train
for perceptrons is not recommended.
Perceptron networks have several limitations. First, the output values of a perceptron can take on only one of two values (0 or 1) due to the hard-limit transfer function. Second, perceptrons can only classify linearly separable sets of vectors. If a straight line or a plane can be drawn to separate the input vectors into their correct categories, the input vectors are linearly separable. If the vectors are not linearly separable, learning will never reach a point where all vectors are classified properly. Note, however, that it has been proven that if the vectors are linearly separable, perceptrons trained adaptively will always find a solution in finite time. You might want to try demop6
. It shows the difficulty of trying to classify input vectors that are not linearly separable.
It is only fair, however, to point out that networks with more than one perceptron can be used to solve more difficult problems. For instance, suppose that you have a set of four vectors that you would like to classify into distinct groups, and that two lines can be drawn to separate them. A two neuron network can be found such that its two decision boundaries classify the inputs into four categories. For additional discussion about perceptrons and to examine more complex perceptron problems, see [HDB1996].
Training (train) | Outliers and the Normalized Perceptron Rule |
© 1994-2005 The MathWorks, Inc.