Signal Processing Toolbox Previous page   Next Page
pcov

Power spectral density using covariance method

Syntax

Description

Pxx = pcov(x,p) implements the covariance algorithm, a parametric spectral estimation method, and returns Pxx, an estimate of the power spectral density (PSD) of the vector x. The entries of x represent samples of a discrete-time signal, and where p is the integer specifying the order of an autoregressive (AR) prediction model for the signal, used in estimating the PSD.

The power spectral density is calculated in units of power per radians per sample. Real-valued inputs produce full power one-sided (in frequency) PSDs (by default), while complex-valued inputs produce two-sided PSDs.

In general, the length of the FFT and the values of the input x determine the length of Pxx and the range of the corresponding normalized frequencies. For this syntax, the (default) FFT length is 256. The following table indicates the length of Pxx and the range of the corresponding normalized frequencies for this syntax.

PSD Vector Characteristics for an FFT Length of 256 (Default)
Real/Complex Input Data
Length of Pxx
Range of the Corresponding Normalized Frequencies
Real-valued
129
[0, pi]
Complex-valued
256
[0, 2pi)

[Pxx,w] = pcov(x,p) also returns w, a vector of frequencies at which the PSD is estimated. Pxx and w have the same length. The units for frequency are rad/sample.

[Pxx,w] = pcov(x,p,nfft) uses the covariance method to estimate the PSD while specifying the length of the FFT with the integer nfft. If you specify nfft as the empty vector [], it takes the default value of 256.

The length of Pxx and the frequency range for w depend on nfft and the values of the input x. The following table indicates the length of Pxx and the frequency range for w in this syntax.

PSD and Frequency Vector Characteristics
Real/Complex Input Data
nfft Even/Odd
Length of Pxx
Range of w
Real-valued
Even
(nfft/2 + 1)
[0, pi]
Real-valued
Odd
(nfft + 1)/2
[0, pi)
Complex-valued
Even or odd
nfft
[0, 2pi)

[Pxx,f] = pcov(x,p,nfft,fs) uses the sampling frequency fs specified as an integer in hertz (Hz) to compute the PSD vector (Pxx) and the corresponding vector of frequencies (f). In this case, the units for the frequency vector are in Hz. The spectral density produced is calculated in units of power per Hz. If you specify fs as the empty vector [], the sampling frequency defaults to 1 Hz.

The frequency range for f depends on nfft, fs, and the values of the input x. The length of Pxx is the same as in the table above. The following table indicates the frequency range for f for this syntax.

PSD and Frequency Vector Characteristics with fs Specified
Real/Complex Input Data
nfft Even/Odd
Range of f
Real-valued
Even
[0,fs/2]
Real-valued
Odd
[0,fs/2)
Complex-valued
Even or odd
[0,fs)

[Pxx,f] = pcov(x,p,nfft,fs,'range') or

[Pxx,w] = pcov(x,p,nfft,'range') specifies the range of frequency values to include in f or w. This syntax is useful when x is real. 'range' can be either:

pcov(...) with no outputs plots the power spectral density in the current figure window. The frequency range on the plot is the same as the range of output w (or f) for a given set of parameters.

Remarks

The power spectral density is computed as the distribution of power per unit frequency.

This algorithm depends on your selecting an appropriate model order for your signal.

Examples

Because the covariance method estimates the spectral density by fitting an AR prediction model of a given order to the signal, first generate a signal from an AR (all-pole) model of a given order. You can use freqz to check the magnitude of the frequency response of your AR filter. This will give you an idea of what to expect when you estimate the PSD using pcov:

Now generate the input signal x by filtering white noise through the AR filter. Estimate the PSD of x based on a fourth-order AR prediction model since in this case we know that the original AR system model a has order 4:

Algorithm

Linear prediction filters can be used to model the second-order statistical characteristics of a signal. The prediction filter output can be used to model the signal when the input is white noise.

The covariance method estimates the PSD of a signal using the covariance method. The covariance (or nonwindowed) method fits an AR linear prediction filter model to the signal by minimizing the forward prediction error (based on causal observations of your input signal) in the least squares sense. The spectral estimate returned by pcov is the squared magnitude of the frequency response of this AR model.

See Also

arcov, lpc, pburg, peig, periodogram, pmcov, pmtm, pmusic, pwelch, pyulear

References

[1] Marple, S.L. Digital Spectral Analysis, Englewood Cliffs, NJ, Prentice-Hall, 1987, Chapter 7.

[2] Stoica, P., and R.L. Moses, Introduction to Spectral Analysis, Prentice-Hall, 1997.


Previous page  pburg peig Next page

© 1994-2005 The MathWorks, Inc.