Signal Processing Toolbox |
Syntax
Hs = spectrum.periodogram Hs = spectrum.periodogram(winname) Hs = spectrum.periodogram({winname,winparameter}) Hs = spectrum.periodogram(...,FFTLength)
Description
Hs = spectrum.periodogram
returns a default periodogram spectrum object, Hs
, that defines the parameters for theperiodogram spectral estimation method. This default object uses a rectangular window and a default FFT length equal to the next power of 2 (NextPow2)
that is greater than the input length.
Hs = spectrum.periodogram(winname)
returns a spectrum object, Hs
, that uses the specified window. If the window uses an optional associated window parameter, it is set to the default value. This object uses the default FFT length.
Hs = spectrum.periodogram({winname,winparameter})
returns a spectrum object, Hs
, that uses the specified window and optional associated window parameter, if any. You specify the window and window parameter in a cell array with a windowname
string and the parameter value. This object uses the default FFT length.
Valid windowname
strings are any valid window
in the Signal Processing Toolbox or a user-defined window. Refer to the corresponding window function page for window parameter information.
You can use set
to change the value of the additional parameter or to define the MATLAB expression and parameters for a user-defined window (see spectrum
for information on using set
).
Note
Window names must be enclosed in single quotes, such as spectrum.periodogram('tukey') or
|
Hs = spectrum.periodogram(...,FFTLength)
returns a spectrum object, Hs
that uses the specified way of determining the FFTLength
. Valid values of the FFTLength
string are as follows.
FFTLength string |
Description |
'InputLength' |
Use the length of the input signal as the FFT length |
'NextPow2' |
Use the next power of 2 greater than the input signal length as the FFT length. This is the default value. |
'UserDefined' |
Use the FFT length provided as an input to the psd method or via a dspopts object. See dspopts for an example. |
Note
See periodogram for more information on the periodogram algorithm.
|
Examples
Define a cosine of 200 Hz, add noise and view its spectral content using the periodogram spectral estimation technique.
Fs=1000; t=0:1/Fs:.3; x=cos(2*pi*t*200)+randn(size(t)); Hs=spectrum.periodogram; % Use default values psd(Hs,x,'Fs',Fs)
See Also
dspdata
, dspopts
, spectrum
, spectrum.welch
, spectrum.mtm
, spectrum.burg
, spectrum.cov
, spectrum.mcov
, spectrum.yulear
, spectrum.eigenvector
, spectrum.music
spectrum.music | spectrum.welch |
© 1994-2005 The MathWorks, Inc.