Signal Processing Toolbox |
Syntax
Hs = spectrum.mtm Hs = spectrum.mtm(TimeBW) Hs = spectrum.mtm(DPSS,Concentrations) Hs = spectrum.mtm(...,CombineMethod) Hs = spectrum.mtm(...,FFTLength)
Description
Hs = spectrum.mtm
returns a default Thompson multitaper spectrum object, Hs
that defines the parameters for the Thompson multitaper spectral estimation algorithm, which uses a linear or nonlinear combination of modified periodograms. The periodograms are computed using a sequence of orthogonal tapers (windows in the frequency domain) specified from discrete prolate spheroidal sequences (dpss
). This object uses the following default values:
Property Name |
Default Value |
Description |
TimeBW |
4 |
Product of time and bandwidth for the discrete prolate spheroidal sequences (or Slepian sequences) used as data windows |
CombineMethod |
'adaptive' |
Algorithm for combining the individual spectral estimates. Valid values are 'adaptive' --adaptive (nonlinear)'unity' --unity weights (linear)'eigenvector' --Eigenvalue weights (linear) |
FFTlength |
'NextPow2' |
String defining how the number of FFT points is determined. The default is the next power of 2 that is greater than the input length. Other valid values are: 'InputLength' and 'UserDefined' . InputLength uses the length of the input signal as the FFT length. UserDefined uses the value provided via a psd method or dspopts object. See dspopts for an example. |
Hs = spectrum.mtm(TimeBW)
returns a spectrum object, Hs
with the specified time-bandwidth product.
Hs = spectrum.mtm(DPSS,Concentrations)
returns a spectrum object, Hs
with the specified dpss data tapers and their concentrations.
Note
You can either specify the time-bandwidth product (TimeBW ) or the DPSS data tapers and their Concentrations . See dpss and pmtm for more information.
|
Hs = spectrum.mtm(...,CombineMethod)
returns a spectrum object, Hs
, with the specified method for combining the spectral estimates. Refer to the table above for valid CombineMethod
values.
Hs = spectrum.mtm(...,FFTLength)
returns a spectrum object, Hs
with the specified way of determining the FFTLength
. Refer to the table above for valid FFTLength
values.
Examples
Define a cosine of 200 Hz, add noise and view its power spectral density using the Thompson multitaper algorithm with a time-bandwidth product of 3.5.
The above example could be done by specifying the data tapers and concentrations instead of the time-bandwidth product.
Fs=1000; t=0:1/Fs:.3; x=cos(2*pi*t*200)+randn(size(t)); [e,v]=dpss(length(x),3.5); Hs=spectrum.mtm(e,v); psd(Hs,x,'Fs',Fs)
See Also
dspdata
, dspopts
, spectrum
, spectrum.periodogram
, spectrum.welch
, spectrum.burg
, spectrum.cov
, spectrum.mcov
, spectrum.yulear
, spectrum.eigenvector
, spectrum.music
spectrum.mcov | spectrum.music |
© 1994-2005 The MathWorks, Inc.