Signal Processing Toolbox |
Syntax
Hs = spectrum.eigenvector
Hs = spectrum.eigenvector(NSinusoids)
Hs = spectrum.eigenvector(NSinusoids,SegmentLength)
Hs = spectrum.eigenvector(...,OverlapPercent)
Hs = spectrum.eigenvector(...,WindowName)
Hs = spectrum.eigenvector(...,SubspaceThreshold)
Hs = spectrum.eigenvector(...,FFTLength
)
Hs = spectrum.eigenvector(...,InputType)
Description
Hs = spectrum.eigenvector
returns a default eigenvector spectrum object, Hs
, that defines the parameters for an eigenanalysis spectral estimation method. This object uses the following default values:
Property Name |
Default Value |
Description |
NSinusoids |
2 |
Number of complex sinusoids |
SegmentLength |
4 |
Segment length |
OverlapPercent |
50 |
Percent overlap between segments |
WindowName |
'Rectangular' |
Window name string or 'User Defined' (see window for valid window names). For more information on each window, refer to its reference page.This argument can also be a cell array containing the window name string or 'User Defined' and, if used for the particular window, an optional parameter value. The syntax is {wname,wparam} .You can use set to change the value of the additional parameter or to define the MATLAB expression and parameters for a user-defined window (see spectrum for information on using set ). |
SubspaceThreshold |
0 |
Threshold is the cutoff for signal and noise separation. The threshold is multiplied by min , the smallest estimated eigenvalue of the signal's correlation matrix. Eigenvalues below the threshold (min*threshold) are assigned to the noise subspace. |
FFTlength |
'NextPow2' |
String defining how the number of FFT points is determined. The default is the next power of 2 that is greater than the input length. Other valid values are 'InputLength' and 'UserDefined' . InputLength uses the length of the input signal as the FFT length. UserDefined uses the value provided via the pseudospectrum method or a dspopts object. See dspopts for an example. |
InputType |
'Vector' |
Type of input that will be used with this spectrum object. Valid values are 'Vector' , 'DataMatrix' and 'CorrelationMatrix'. |
Hs = spectrum.eigenvector(NSinusoids)
returns a spectrum object, Hs
, with the specified number of sinusoids and default values for all other properties. Refer to the table above for default values.
Hs = spectrum.eigenvector(NSinusoids,SegmentLength)
returns a spectrum object, Hs
, with the specified segment length.
Hs = spectrum.eigenvector(...,OverlapPercent)
returns a spectrum object, Hs
, with the specified overlap between segments.
Hs = spectrum.eigenvector(...,WindowName)
returns a spectrum object, Hs
, with the specified window.
Note
Window names must be enclosed in single quotes, such as spectrum.eigenvector(3,32,50,'chebyshev') or spectrum.eigenvector(3,32,50,{'chebyshev',60})
|
Hs = spectrum.eigenvector(...,SubspaceThreshold)
returns a spectrum object, Hs
, with the specified subspace threshold.
Hs = spectrum.eigenvector(...,FFTLength)
returns a spectrum object, Hs
, with the specified way of the determing the FFT length.
Hs = spectrum.eigenvector(...,InputType)
returns a spectrum object, Hs
, with the specified input type.
Note
See peig for more information on the eigenanalysis algorithm.
|
Examples
Define a complex signal with three sinusoids, add noise, and view its pseudospectrum using eigenanalysis. Set the FFT length to 128.
randn('state',1); n=0:99; s=exp(i*pi/2*n)+2*exp(i*pi/4*n)+exp(i*pi/3*n)+randn(1,100); Hs=spectrum.eigenvector(3,32,95,'rectangular',5); pseudospectrum(Hs,s,'NFFT',128)
See Also
dspdata
, dspopts
, spectrum
, spectrum.music
, spectrum.burg
, spectrum.cov
, spectrum.mcov
, spectrum.yulear
, spectrum.periodogram
, spectrum.welch
, spectrum.mtm
spectrum.cov | spectrum.mcov |
© 1994-2005 The MathWorks, Inc.