Signal Processing Toolbox |
Syntax
Description
Hs = spectrum.cov
returns a default covariance spectrum object, Hs
, that defines the parameters for the covariance spectral estimation algorithm. The covariance algorithm estimates the spectral content by fitting an auto-regressive (AR) linear prediction model of a given order
to the signal.
Hs = spectrum.cov(order)
returns a spectrum object, Hs
with the specified order
and the FFTLength
determined using NextPow2
. The default value for order
is 4.
Hs = spectrum.cov(order,
returns a covariance spectrum object, FFTLength
)
Hs
with the order
of the covariance model and the specified way of determining the FFTLength
. Valid values of the FFTLength
string are:
FFTLength string |
Description |
'InputLength' |
Use the length of the input signal as the FFT length |
'NextPow2' |
Use the next power of 2 greater than the input signal length as the FFT length. This is the default value. |
'UserDefined' |
Use the FFT length provided as an input to the psd method or via a dspopts object. See dspopts for an example. |
Note
See pcov for more information on the covariance algorithm.
|
Examples
Define a fourth order auto-regressive model and view its power spectral density using the covariance algorithm.
randn('state',1); x=randn(100,1); x=filter(1,[1 1/2 1/3 1/4 1/5],x);%Fourth order AR filter Hs=spectrum.cov; %Fourth order AR model psd(Hs,x,'NFFT',512)
See Also
dspdata
, dspopts
, spectrum
, spectrum.burg
, spectrum.mcov
, spectrum.yulear
, spectrum.periodogram
, spectrum.welch
, spectrum.mtm
, spectrum.eigenvector
, spectrum.music
spectrum.burg | spectrum.eigenvector |
© 1994-2005 The MathWorks, Inc.